Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 67 имени Героя Российской Федерации В. В. Замараева»

Согласовано

Заместитель директора по УВР

« 0/ » сентерр 2018 г.

Утверждаю

Директор МВОУ СОШ № 67

М. А. Чепелева

Приказ № 182-од от 01.09.2018 г.

COM Nº67

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА курса внеурочной деятельности

«Познавательная математика» 7-8 классы

Интеллектуальное направление

Разработчик: Гребенкина Ирина Юрьевна, учитель математики

Пояснительная записка

Данная программа составлена в соответствии с возрастными особенностями обучающихся и рассчитана на 1 час в неделю, 35 часов в год. Срок реализации 1 год.

Математический кружок – одна из наиболее действенных и эффективных форм внеклассной работы по математике. Достижению данных целей способствует организация внеклассной работы, которая является неотъемлемой частью учебно-воспитательной работы в школе. Она позволяет не только углублять знания учащихся в предметной области, но и способствует развитию их дарований, логического мышления, расширяет кругозор. Математические кружки по математике являются основной формой внеклассной работы с учащимися в 7-8 классах. Занятия математического кружка являются неотъемлемой частью учебного процесса и естественно влияют на улучшение результатов в выполнении требований ФГОС.

Цель программы – создание условий для повышения уровня математического развития учащихся, формирования логического мышления посредством освоения основ содержания математической деятельности.

- **в направлении личностного развития:** формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества; развитие интереса к математическому творчеству и математических способностей;
- в метапредметном направлении: формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
- **в предметном направлении:** создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.

Задачи:

- ° научить правильно применять математическую терминологию;
- подготовить учащихся к участию в олимпиадах;
- совершенствовать навыки счёта, применения формул, различных приемов;
- научить делать доступные выводы и обобщения, обосновывать собственные мысли.
- формировать навыки самостоятельной работы;
- ^о воспитывать сознательное отношение к математике, как к важному предмету;
- формировать приемы умственных операций школьников (анализ, синтез, сравнение, обобщение, классификация, аналогия), умения обдумывать и планировать свои действия.
- [°] воспитывать уважительное отношение между членами коллектива в совместной творческой деятельности;
- ° воспитывать привычку к труду, умение доводить начатое дело до конца.
- ° расширять кругозор учащихся в различных областях элементарной математики;
- развивать математическое мышление, смекалку, эрудицию;
- ^о развивать у детей вариативность мышления, воображение, фантазии, творческие способности, умение аргументировать свои высказывания, строить простейшие умозаключения.

Программа способствует:

- ° развитию разносторонней личности ребенка, воспитанию воли и характера;
- ° созданию условий для формирования и развития практических умений обучающихся решать нестандартные задачи, используя различные методы и приемы;

- ° выявлению одаренных детей;
- ° развитию интереса к математике.

В основу составления программы положены следующие педагогические принципы:

- учет возрастных и индивидуальных особенностей каждого ребенка;
- доброжелательный психологический климат на занятиях;
- ° личностно-деятельный подход к организации учебно-воспитательного процесса;
- ° подбор методов занятий соответственно целям и содержанию занятий и эффективности их применения;
- ° оптимальное сочетание форм деятельности;
- ° доступность.

1. Планируемы результаты освоения содержания программы

У учащихся могут быть сформированы личностные результаты:

- ° ответственное отношение к учению, готовность и способность обучающихся к самообразованию на основе мотивации к обучению ипознанию, осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
- ° способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- ° умение контролировать процесс и результат математической деятельности;
- ° первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- ° коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- ° критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- ° креативность мышления, инициативы, находчивости, активности при решении задач.

Метапредметные:

1) Регулятивные.

Учащиеся получат возможность научиться:

- ° составлять план и последовательность действий;
- ° определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
- предвидеть возможность получения конкретного результата при решении задач;
- ° осуществлять констатирующий и прогнозирующий контроль по результату и способу действия;
- ° концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;
- [°] адекватно оценивать правильность и ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.

2) Познавательные.

Учащиеся получат возможность научиться:

° устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

- ° формировать учебную и общекультурную компетентность в области использования информационно-коммуникационных технологий;
- [°] видеть математическую задачу в других дисциплинах, окружающей жизни;
- ° выдвигать гипотезу при решении учебных задач и понимать необходимость их проверки;
- ° планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
- ° выбирать наиболее эффективные и рациональные способы решения задач;
- ° интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
- ° оценивать информацию (критическая оценка, оценка достоверности).

3) Коммуникативные.

Учащиеся получат возможность научиться:

- ° организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
- ° взаимодействовать и находить общие способы работы; работать в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- ° прогнозировать возникновение конфликтов при наличии различных точек зрения;
- ° разрешать конфликты на основе учёта интересов и позиций всех участников;
- ° координировать и принимать различные позиции во взаимодействии;
- ° аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные

Учащиеся получат возможность научиться:

- ° самостоятельно приобретать и применять знания в различных ситуациях для решения различной сложности практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора икомпьютера;
- ° пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
- ° уметь решать задачи с помощью перебора возможных вариантов;
- ° выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- ° применять изученные понятия, результаты и методы при решении задач из различных реальных ситуаций, не сводящихся к непосредственному применению известных алгоритмов;
- ° самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задачи с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

2. Содержание программы и планируемые результаты освоения по темам

Элементы математической логики. Теория чисел. Логика высказываний. Диаграммы Эйлера-Венна. Простые и сложные высказывания. Высказывательные формы и операции над ними. Задачи на комбинации и расположение. Применение теории делимости к решению олимпиадных и конкурсных задач. Задачи на делимость, связанные с разложением выражений на множители. Степень числа. Уравнение первой степени с двумя неизвестными в целых числах. Графы в решении

задач. Принцип Дирихле.

Планируемые результаты. Обучающийся получит возможность:

- о уметь решать логические задачи;
- о отображать логические рассуждения геометрически;
- о записывать сложные высказывания, формулировки теорем, аксиом, используя символы алгебры и логики;
- о уметь применять графы и принцип Дирихле при решении задач;
- о анализировать и осмысливать текст задачи, моделировать условие с помощью схем, рисунков, графов;
- о строить логическую цепочку рассуждений, критически оценивать полученный ответ, осуществлять самоконтроль.
- о уметь решать задачи повышенной сложности;
- о применять различные способы разложения на множители при решении задач;
- о научится решать уравнения и системы уравнений первой степени с двумя переменными.

Геометрия многоугольников. Площади. История развития геометрии. Вычисление площадей в древности, в древней Греции. Геометрия на клеточной бумаге. Разделение геометрических фигур на части. Формулы для вычисления объемов многогранников. Герон Александрийский и его формула. Пифагор и его последователи. Различные способы доказательства теоремы Пифагора. Пифагоровы тройки. Геометрия в древней индии. Геометрические головоломки. Олимпиадные и конкурсные геометрические задачи. О делении отрезка в данном отношении. Задачи на применение подобия, золотое сечение. Пропорциональный циркуль. Из истории преобразований.

Планируемые результаты. Обучающийся получит возможность:

- о распознавать и сопоставлять на чертежах и моделях геометрические фигуры;
- уметь разделять фигуры на части по заданному условию из частей конструировать различные фигуры;
- о уметь решать задачи на нахождение площади и объема фигур, знать старинные меры измерения площадей;
- о познакомиться с историческими сведениями о развитии геометрии, расширить кругозор в области изобразительного искусства, архитектуры, получить практические навыки изображения увеличенных картин;

Геометрия окружности. Архимед о длине окружности и площади круга. О числе Пи. Окружности, вписанные углы, вневписанные углы в олимпиадных задачах.

Планируемые результаты. Обучающийся получит возможность:

- о распознавать и сопоставлять на чертежах и моделях окружности;
- о уметь решать задачи на применение свойств окружности, касательной, вписанных углов и др.

Теория вероятностей. Место схоластики в современном мире. Классическое определение вероятности. Геометрическая вероятность. Основные теоремы теории вероятности и их применение к решению задач.

Планируемые результаты. Обучающийся получит возможность:

- о иметь представление об элементарном событии уметь вводить обозначения для элементарных событий простого опыта, интерпретировать условия задач в виде схем и рисунков;
- о знать, что сумма вероятностей всех элементарных событий равна единице;
- о понимать что такое объедение и пересечение событий, что такое несовместные события;
- о уметь решать вероятностные задачи с применением формул сложения вероятностей для

несовместных событий, формулы умножения вероятностей независимых событий.

Уравнения и неравенства. Уравнения с параметрами – общие подходы к решению. Разложение на множители. Деление многочлена на многочлен. Теорема Безу о делителях свободного члена, деление «уголком», решение уравнений и неравенств. Модуль числа. Уравнения и неравенства с модулем.

Планируемые результаты. Обучающийся получит возможность:

- о познакомиться с методами решения уравнения с параметрами, простых и более сложных, применением графического способа решения;
- о овладеть навыками разложения на множители многочленов 5,3,4 степеней;
- о научиться решать уравнения и неравенства с модулем, «двойным» модулем;

Тематическое планирование

№	Тема	Количество часов
1.	Элементы математической логики.	7
	Теория чисел.	
2.	Геометрия многоугольников.	9
3.	Геометрия окружности.	4
4.	Теория вероятностей.	5
5.	Уравнения и неравенства.	6
6.	Защита рефератов	4
	Итого	35 часов

Тематическое календарное планирование курса

№	Тема занятия	Форма и вид деятельности
	Тема 1. Элементы математической	
	логики. Теория чисел.	
1.	Логика высказываний. Диаграммы Эйлера-	Беседа-лекция, Решение занимательных задач
	Венна.	
2.	Простые и сложные высказывания.	Беседа. Практическая работа в группах
	Высказывательные формы и операции над	
	ними.	
3.	Задачи на комбинации и расположение.	Решение задач, индивидуальная работа
4.	Применение теории делимости к решению	Мини-лекция, «Конкурс знатоков»
	олимпиадных и конкурсных задач.	
5.	Задачи на делимость, связанные с	Решение задач, работа в группах
	разложением выражений на множители.	
6.	Степень числа. Уравнение первой степени с	Решение задач, работа в группах
	двумя неизвестными в целых числах.	
7.	Графы в решении задач. Принцип Дирихле.	Мини-лекция Решение задач, работа в группах
	Тема 2. Геометрия многоугольников.	
8.	Площади. История развития геометрии.	Беседа. Знакомство с научно-популярной

	Вычисление площадей в древности, в древней Греции.	литературой. Практическая работа в группах
9.	Геометрия на клеточной бумаге. Разделение геометрических фигур на части.	Практическая работа в группах
10.	Формулы для вычисления объемов многогранников. Герон Александрийский и его формула.	Практическая работа в группах
11.	Пифагор и его последователи. Различные способы доказательства теоремы Пифагора.	Беседа. Просмотр фрагментов фильма. Оформление математической газеты, работа с источниками информации.
12.	Различные способы доказательства теоремы Пифагора. Пифагоровы тройки. Геометрия в древней индии.	Мини-лекция . Беседа. Оформление математической газеты, работа с источниками информации.
13.	Геометрические головоломки. Олимпиадные и конкурсные геометрические задачи. вадачи.	Творческая работа в группах
14.	Геометрические головоломки. Олимпиадные и конкурсные геометрические задачи.	Решение занимательных задач, Творческая работа в группах
15.	О делении отрезка в данном отношении. Задачи на применение подобия, золотое сечение.	Творческая работа в группах, диагностическая работа в виде викторины «Своя игра»
16.	Пропорциональный циркуль. Из истории преобразований.	Мини-лекция Практическая работа
	Тема 3. Геометрия окружности	
17. 18.	Архимед о длине окружности и площади круга. О числе Пи.	Беседа. Просмотр фрагментов фильма. работа с источниками информации, игра «Конкурс знатоков»
19.	Окружности, вписанные углы, вневписанные углы в олимпиадных задачах.	Творческая работа в группах. Решение олимпиадных и занимательных задач
20.	Окружности, вписанные углы, вневписанные углы в олимпиадных задачах.	Творческая работа в группах. Решение олимпиадных и занимательных задач
	Тема 4. Теория вероятностей.	
21.	Классическое определение вероятности.	Беседа. Решение задач. Практическая работа в группах
22.	Геометрическая вероятность.	«Математический КВН»
23.	Основные теоремы теории вероятности и их применение к решению задач.	Творческая работа в группах. Решение олимпиадных и занимательных задач
24.	Основные теоремы теории вероятности и их применение к решению задач.	Практическая работа. Диагностическая работа в виде теста
25.	Работа над проектом. Как провести исследование. Работа с источниками информации.	Проективная работа, индивидуальная работа над проектами, экскурсия

	Тема 5. Уравнения и неравенства.	
26.	Уравнения с параметрами – общие подходы	Мини-лекция. Решение заданий в парах.
	к решению.	
27.	Разложение на множители.	Беседа. Практическая работа в группах.
28.	Деление многочлена на многочлен. Теорема	Мини-лекция Практическая работа в парах.
	Безу о делителях свободного члена,	
	деление «уголком»	
29.	Решение уравнений и неравенств.	Решение задач, работа в группах Участие в
		математическом конкурсе
30.	Решение уравнений и неравенств.	«Конкурс знатоков»,
		работа с источниками информации, ресурсами
		Интернет.
31.	Модуль числа. Уравнения и неравенства с	Практическая работа. Диагностическая
	модулем.	работа в виде теста.
	Тема 6. Проекты.	
32.	Работа с рефератами	Работа с источниками информации. Беседа.
33.	Защита реферата.	
34.	Защита реферата	
35.	Заключительное занятие.	викторина «Своя игра»

Литература:

- 1. Глейзер Г.И. История математики в школе 7–8 кл.: Пособие для учителей / Г.И. Глейзер.— М.:Просвещение,1982. 240с.
- 2. Гусев В.А. и др. Внеклассная работа по математике в 6-8 классах. Под ред. С.И. Шварцбурда, М.:Просвещение, 1977 288с.
- 3. Зубелевич Г.И. Занятия математического кружка: Пособие для учителей. М.: Просвещение, 2000.-79c.
- 4. Коваленко В.Г. Дидактические игры на уроках математики: Кн. Для учителя.-М.:Просвещение, 2001.-96.
- 5. Криволапова Н.В. Внеурочная деятельность. Программа развития познавательных способностей учащихся. 5-8 классы. -М.: Просвещение. 2012. 117с.
- 6. Марков С.И. курс истории математики / С.И. Марков. Иркутск, 1995.
- 7. Майер Р.А. История математики. Курс лекций. Ч.1, Ч. 2. Красноярск, 2001, 2006.
- 8. Фрибус Е.А. Старинные задачи с историко-математическими экскурсами: Методические рекомендации в помощь учителям математики /Е.А. Фрибус. Абакан, 1988-1990. Ч1,2.
- 9. Фрибус Е.А. Избранные старинные задачи науки о случайном: Методические рекомендации /Е.А. Фрибус. Абакан, 1989.
- 10. Энциклопедия для детей. Т.11. Математика / глав. ред. М.Д Аксёнов. М.: Аванта+, 2002.

Интернет ресурсы:

http://fgosreestr.ru/ Реестр примерных образовательных программ (ФГОС)

http://school.znanika.ru/ - страница электронной школы «Знаника».

http://russian-kenguru.ru/konkursy/kenguru/zadachi/2016goda русская страница конкурсов для школьников.

http://www.yaklass.ru/ страница образовательного проекта «Я-класс»

<u>http://www.unikru.ru/</u> страница «Мир конкурсов от уникум» . Центр интеллектуальных и творческих состязаний.

http://nsportal.ru/ страницы учительского портала Социальной сети работников образования http://www.rosolymp.ru/ Всероссийская олимпиада школьников материалы, результаты.